薄型氣缸SMC安裝連接尺寸
SMC氣缸腔內壓力能轉化成活塞動能,而活塞的部分動能又轉化成有桿腔的壓力能,結果造成有桿腔壓力比蓄氣-無桿腔壓力還高,即形成“氣墊",使活塞產生反向運動,結果又會使蓄氣-無桿腔壓力增加,且又大于有桿腔壓力。如此便出現活塞在缸體內來回往復運動—即彈跳。直至活塞兩側壓力差克服不了活塞阻力不能再發生彈跳為止。待有桿腔氣體由A排空后,活塞便下行至終點。
五階段:耗能段。活塞下行至終點后,如換向閥不及時復位,則蓄氣-無桿腔內會繼續充氣直至達到氣源壓力。再復位時,充入的這部分氣體又需全部排掉。可見這種充氣不能作用有功,故稱之為耗能段。實際使用時應避免此段(令換向閥及時換向返回復位段)。 對內徑D=90mm的氣缸,在氣源壓力0.65MPa下進行實驗,所得沖擊氣缸特性曲線見圖42.2-12。上述分析基本與特性曲線相符。 對沖擊段的分析可以看出,很大的運動加速使活塞產生很大的運動速度,但由于必須克服有桿腔不斷增加的背壓力及摩擦力,則活塞速度又要減慢,因此,在某個沖程處,運動速度必達zui大值,此時的沖擊能也達zui大值。各種沖擊作業應在這個沖程附近進行。 沖擊氣缸在實際工作時,錘頭模具撞擊工件作完功,一般就借助行程開關發出信號使換向閥復位換向,缸即從沖擊段直接轉為復位段。這種狀態可認為不存在彈跳段和耗能段。
日本SMC;日本喜開理CKD;日本神視 SUNX;日本歐姆龍OMRON;日本KEYENCN ; 油研(YUKEN),日本TAIYO太陽鐵工;日本小金井KOGANEI,德國費斯托FESTO;德國BURKERT寶德;德國皮爾磁PILZ;德國易福門愛福門IFM;德國E+H;德國P+F;英國NORGREN諾冠:德國HERION海隆;德國BUSCHJOST寶碩;德國BALLUFF巴魯夫;德國UNI;法國SCHNEIDER施耐德;韓國YPC,韓國YSC,美國ASCO;美國威格士VICKERS;美國西特Setra;美國Gems;美國parker派克;德國BOSCH REXROTH博士力士樂意大利CALPEDA科沛達;意大利ODE;意大利UNIVER;瑞士ABB;等。
SMC氣缸原理可見,其一部分能量(有時是較大部分能量)被消耗于克服背壓(即p2)做功,因而沖擊能沒有充分利用。假如沖擊一開始,就讓有桿腔氣體全排空,即使有桿腔壓力降至大氣壓力,則沖擊過程中,可節省大量的能量,而使沖擊氣缸發揮更大的作用,輸出更大的沖擊能。這種在沖擊過程中,有桿腔壓力接近于大氣壓力的沖擊氣缸,稱為快排型沖擊氣缸。其結構見圖42.2-13a。 快排型沖擊氣缸是在普通型沖擊氣缸的下部增加了“快排機構"構成。快排機構是由快排導向蓋1、快排缸體4、快排活塞3、密封膠墊2等零件組成。
SMC標準氣缸對于接近行程末端時速度較高的氣缸,不采取必要措施,活塞就會以很大的力(能量)撞擊端蓋,引起振動和損壞機件。為了使活塞在行程末端運動平穩,不產生沖擊現象。在氣缸兩端加設緩沖裝置,一般稱為緩沖氣缸。緩沖氣缸見圖42.2-4,主要由活塞桿1、活塞2、緩沖柱塞3、單向閥5、節流閥6、端蓋7等組成。其工作原理是:當活塞在壓縮空氣推動下向右運動時,缸右腔的氣體經柱塞孔4及缸蓋上的氣孔8排出。在活塞運動接近行程末端時,活塞右側的緩沖柱塞3將柱塞孔4堵死、活塞繼續向右運動時,封在氣缸右腔內的剩余氣體被壓縮,緩慢地通過節流閥6及氣孔8排出,被壓縮的氣體所產生的壓力能如果與活塞運動所具有的全部能量相平衡,即會取得緩沖效果,使活塞在行程末端運動平穩,不產生沖擊。調節節流閥6閥口開度的大小,即可控制排氣量的多少,從而決定了被壓縮容積(稱緩沖室)內壓力的大小,以調節緩沖效果。若令活塞反向運動時,從氣孔8輸入壓縮空氣,可直接頂開單向閥5,推動活塞向左運動。如節流閥6閥口開度固定,不可調節,即稱為不可調緩沖氣缸。
SMC氣缸-MY2系列;一、形式:高精度導軌型;1、系列:MY2H、MY2HT;動作方式:雙作用;缸徑(mm):16,25,40。二、形式:凸輪隨動導軌型;系列:MY2C;動作方式:雙作用;缸徑(mm):16,25,40。
SMC氣缸-MY1系列;一、形式:標準型;系列:MY1B;動作方式:雙作用;缸徑(mm):10,16,20,25, 32,40,50,63,80,100。二、形式:滑動軸承;系列:MY1M;動作方式:雙作用;缸徑(mm):16,20,25,32,40,50,63。三、形式:凸輪隨動導軌型;系列:MY1C;動作方式:雙作用;缸徑(mm):16,20,25,32,40,50,63。四、形式:高精度導軌型;1、系列:MY1H;動作方式:雙作用;缸徑(mm):10,16,20,25,32,40。2、系列:MY1HT;動作方式:雙作用;缸徑(mm):50,63。五、
薄型氣缸SMC安裝連接尺寸